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■ Abstract The endoplasmic reticulum (ER) serves as a way-station during the
biogenesis of nearly all secreted proteins, and associated with or housed within the
ER are factors required to catalyze their import into the ER and facilitate their folding.
To ensure that only properly folded proteins are secreted and to temper the effects of
cellular stress, the ER can target aberrant proteins for degradation and/or adapt to the
accumulation of misfolded proteins. Molecular chaperones play critical roles in each
of these phenomena.
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INTRODUCTION

In addition to a number of growth factors and other serum proteins, the liver secretes
about 1% of its total weight in albumin each day. Although the secretory capacity
of other cells may be lower, every eukaryotic cell exports a variety of proteins either
to meet its nutritional needs (proteases and glycanases), for cell-cell communica-
tion (growth hormones and pheromones), or for defense (toxins and antibodies).
The first compartment in which this heterogeneous assortment of factors matures is
the endoplasmic reticulum (ER). In addition, nearly all proteins that ultimately re-
side in this and other compartments of the secretory pathway or in the plasma mem-
brane are first translocated (imported) into the ER. To fulfill its role as the primary
gateway to the secretory pathway, the ER houses enzymes that process polypeptides
and catalyze protein folding. Also associated with the ER is a group of molecular
chaperones, defined here as proteins that facilitate the folding of nascent polypep-
tides. In this review, we discuss the mechanism of action of ER-associated chap-
erones, emphasizing studies undertaken in the yeastSaccharomyces cerevisiae.
When appropriate, specific experiments are discussed using other organisms.

MECHANISM OF ACTION OF THE MAJOR CLASSES OF
CHAPERONES INVOLVED IN PROTEIN SECRETION

The stress-inducible 70-kDa heat shock proteins (Hsp70s) and the constitutively
expressed heat shock cognate proteins (Hsc70s) belong to a family of molecular
chaperones that bind and release polypeptides in an ATP-dependent cycle (32).
Early partial proteolysis experiments suggested that Hsc70 could be divided into
three regions: a 44-kDa amino-terminal ATPase domain and a 15-kDa peptide-
binding domain, followed by a poorly conserved, 10-kDa carboxy-terminus (40,
257). Structural studies on the peptide-binding domain indicated that peptides are
trapped in a channel that is gated by a flexible helical lid (166, 286). When ATP is
bound, the helical lid pivots to expose this channel and Hsc70 exhibits weak affinity
for substrates. Transient interactions with peptide can stimulate ATP hydrolysis and
thus trigger a conformational change in the peptide-binding domain that increases
the stability of the peptide-Hsc70 complex by closing the helical lid to trap the
bound substrate. The exchange of ADP for ATP is then critical for release of the
substrate (151, 219). This cycle of substrate binding and release, combined with
the preference of Hsc70s for hydrophobic stretches of amino acids (18, 70, 211)
that may become solvent-exposed in unfolded proteins, enable Hsc70s to interact
transiently with polypeptides as they progress through the secretory pathway.

Hsc70s are inherently weak ATPases (0.03–0.27 min−1), but their activity is
greatly enhanced by members of the GrpE and DnaJ (Hsp40) families. Identi-
fied first in bacteria, GrpE stimulates the exchange of ATP for ADP on DnaK
(138), thus facilitating release of substrate and permitting the commencement of
a new binding cycle (241). However, a GrpE-like exchange factor does not ap-
pear to be critical for the early secretory pathway. In contrast, DnaJ chaperones,
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which stimulate the ATPase activity of Hsc70 and thus promote stable substrate
binding (151, 219), are critical at many steps in the eukaryotic secretory pathway.
In some cases, DnaJ chaperones may even deliver specific substrates to Hsc70s
(126, 136, 160, 240, 267) and anchor Hsc70s at the ER or mitochondrial membrane
(24, 206).

The DnaJ (Hsp40) family of chaperones is defined by the presence of an∼70
amino acid sequence called the J domain that mediates Hsc70 interaction. Struc-
tural studies of the J domains from bacterial DnaJ (106, 193, 242), human Hdj1p
(203) and the SV40 and polyomavirus large T antigens (14, 131) indicate that this
domain folds into fourα-helices, two of which are packed tightly against each
other to form a finger-like projection. An invariant HPD motif is positioned in a
loop at the tip of this finger between the second and thirdα-helices and is critical
for interactions with the Hsc70 ATPase domain (59, 68, 247, 254). Additional re-
gions of DnaJ chaperones may also contact a site near or at the substrate-binding
domain of Hsc70s (80, 237, 238). With the exception of the J domain, DnaJ fam-
ily members share little else in common. There are three broad subtypes, de-
fined by their similarity to the bacterial DnaJ protein (41). Type 1 DnaJ homologs
are the most similar to DnaJ. In addition to the J domain, they contain a 30–40
amino acid glycine/phenylalanine-rich region that facilitates Hsc70 interaction
(128, 240, 255), and a cysteine-rich region that binds zinc and forms a peptide-
binding pocket (5, 240). Type II DnaJ family members lack the cysteine-rich re-
gion and Type III proteins lack both the cysteine-rich and glycine/phenylalanine-
rich regions.Escherichia coliDnaJ was recently observed to bind preferentially
to hydrophobic, 8-amino acid motifs (212), providing further evidence that this
chaperone can deliver polypeptide substrates to Hsc70s.

The Hsp90 chaperones are abundant, essential proteins that have been most
intensely studied for their role in kinase and steroid hormone receptor maturation
(reviewed in 35). Although mammalian cells contain both cytoplasmic and lumenal
Hsp90s, yeast lack a lumenal Hsp90 homologue. Hsp90 function depends upon
two peptide-binding domains at the amino and carboxy termini, both of which can
mediate dimerization. The amino terminus also contains a weak ATPase activity
(202, 234) that is essential for Hsp90 function (183, 188). Peptide binding (and
dimerization) at the amino terminus is regulated by ATP (234). Whereas both
peptide binding domains of Hsp90 can prevent aggregation of denatured proteins
in vitro, recent evidence indicates that full-length Hsp90 is required to enhance
the refolding of denatured substrate in vitro (124). Still controversial, however,
is whether Hsp90s are generally involved in protein folding. Support for their
involvement in protein folding includes the observation that Hsp90 can maintain
aggregation-prone substrates in a refolding-competent state in vitro (21, 74) and
that it associates with unassembled immunoglobulin chains in the mammalian
ER (158, 217). In addition, Hsp90 can enhance the Hsp70- and Hsp40-mediated
folding of luciferase in vitro and in vivo (87, 125, 223). However, the folding of
most proteins is unaffected in yeast lacking functional Hsp90 (173).

The peptidyl prolyl isomerases (PPIases) comprise another family of chaper-
ones, with members found in virtually all cellular compartments where protein
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folding occurs. The PPIases catalyze thecis/trans isomerization of the peptide
bond immediately preceding proline residues, which is kinetically unfavorable
when uncatalyzed (135). These chaperones can be divided into two structurally
distinct classes based on homology: the immunophilin family, whose founding
member is the target of the immunosuppressant cyclosporin, and the FK-binding
protein (FKBP) family, whose founding member is the target of the compound
FK506 (280). PPIases have multiple functions, some with little to do with pro-
tein folding, which has led to controversy regarding the requirement for PPIases
in folding reactions. However, other observations support their significance for
protein folding in the ER. First, PPIases are induced by the unfolded protein re-
sponse (UPR; see below) (39, 245). Second, the physiological significance of a
cyclophilin family member fromDrosophila melanogasterknown asninaA is
well established (3, 45, 233). AsninaA is specifically required in the folding of a
subset of rhodopsins, it is discussed in the final section of this review.

MOLECULAR CHAPERONES AND PROTEIN TRANSLATION

The influence of chaperones on the maturation of both secretory and nonsecretory
pathway-targeted proteins begins during translation. In yeast, chaperones of the
Hsp70 (Ssb1/2p; 174) and Hsp40 families (Sis1p, zuotin, Ydj1p; 28, 275, 284)
have been implicated in translation by their association with ribosomes and/or by
their requirement for translation initiation, efficient protein synthesis, or the trans-
lation of heterologous proteins. Although the Ssb chaperones crosslink directly
to the nascent polypeptide-ribosome complex and might prevent protein misfold-
ing (194), the mechanisms by which these and possibly other chaperones facilitate
translation remain largely unknown. Studies examining early events during protein
translation in mammalian and in heterologous systems have uncovered ribosome-
nascent polypeptide chain interactions with the Hsp70 and Hsp40 chaperones,
as well as with the TriC/CCT chaperonin complex (12, 63, 76, 196). Recently, a
ribosome-associated Hsp70-Hsp40 complex formed by Ssz1p/Pdr13p and zuotin
was shown to facilitate the translocation of a ribosome-bound mitochondrial pre-
cursor protein into the mitochondria in vitro (81). However, a ribosome-associated
Hsp70-Hsp40 complex that similarly facilitates preprotein translocation into the
ER has not been identified.

PROTEIN TRANSLOCATION INTO THE YEAST ER IS
FACILITATED BY MOLECULAR CHAPERONES IN THE
CYTOPLASM AND ER LUMEN

Protein translocation (import) into the ER proceeds either cotranslationally or post-
translationally. During cotranslational translocation, translation is attenuated after
the emergence of the signal peptide through the action of the signal recognition
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particle (SRP). Upon interaction with the SRP receptor (SR, also known as “Dock-
ing Protein”), GTP-dependent release of SRP permits the re-initiation of trans-
lation, and the signal sequence of the preprotein is presented to the transloca-
tion machinery at the ER membrane (reviewed in 123). During posttranslational
translocation, the signal sequence-containing secreted preprotein is synthesized
in its entirety before interaction with the translocation machinery (reviewed in
205). One of many advantages provided by the examination of translocation in
yeast is that the pathways operate in parallel, and a survey by Ng et al. (176) con-
cluded that signal sequences with greater hydrophobic cores co-opt preferentially
the cotranslational pathway, or utilize both pathways.

When genes encoding components of SRP and SR are deleted, yeast grow
∼fourfold more slowly than wild-type cells and accumulate several cotranslation-
ally targeted preproteins in the cytoplasm (97, 185). A recent microarray analy-
sis from Mutka & Walter (170) indicates that the ability of yeast to survive the
loss of SRP arises from the induction of ER-associated chaperones that may pre-
vent preproteins from aggregating, and from an attenuation of protein synthesis,
perhaps permitting the translocation machinery to better couple translation and
translocation.

Because the translocation of preproteins utilizing the posttranslational pathway
is uncoupled from translation, and because the diameter of the translocation chan-
nel in the ER membrane precludes the translocation of folded proteins (see below),
the preprotein must translocate in a nonnative conformation. Thus, cytoplasmic
molecular chaperones are required for the translocation of preproteins into the ER
posttranslationally even when SRP function is proficient.

The first evidence that chaperones facilitate posttranslational protein transloca-
tion emerged from both biochemical and genetic studies. Chirico et al. (43) utilized
an in vitro assay in which the dependence on yeast cytosol of the translocation
of a wheat germ–synthesized yeast mating factor prepheromone, pre-proα factor
(ppαF), into yeast ER-derived microsomes was observed (261). The cytoplasmic
Hsc70s Ssa1p and Ssa2p were then purified based on their ability to substitute for
cytosol (43). The cytosol dependence could also be replaced by denaturation of the
substrate in urea prior to the translocation assay, suggesting that the chaperones
maintained ppαF in an unfolded conformation. Deshaies and colleagues (56) si-
multaneously found that the depletion of Ssa1p in yeast harboring knockout alleles
of theSSA1,SSA2, andSSA4genes (which encodes a third, related Hsc70) led to the
accumulation of ppαF and a mitochondrial-targeted preprotein in the cytoplasm.
Support for the requirement of cytoplasmic chaperones in protein translocation
also emerged from examining translocation in other systems. First, although the
posttranslational pathway is rarely utilized in higher eukaryotes, short preproteins
that cannot interact with SRP during translation required Hsc70 for translocation
into mammalian microsomes (288). Second, Gross and co-workers (270) found
thatdnaJanddnaKmutants failed to secrete bacterial preproteins that utilize the
Sec-independent secretory pathway, and that overexpression of DnaJ and DnaK
facilitated the secretion of Sec-dependent preproteins insecBmutants. Thus, as in
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yeast, cytoplasmic chaperones apparently compensate for defects in an alternate
secretory pathway.

To determine whether the action of Ssa1/2p on posttranslational translocation
requires an Hsp40 co-chaperone, Caplan et al. (36) examined yeast containing a
temperature-sensitive allele ofYDJ1, an ER-associated Type I Hsp40, and found
that posttranslationally translocated preproteins accumulated in the cytoplasm at
the nonpermissive temperature. Both genetic (10) and biochemical (53, 54) data
indicate that Ssa1p and Ydj1p interact, an interaction that is required to support
translocation (10, 36, 153). These combined results led to a model in which release
of the Ssa1p-bound preprotein is catalyzed by Ydj1p at the ER membrane, resulting
in the delivery of the preprotein in an unfolded conformation to the translocation
machinery.

However, a recent study suggests that chaperones may free preproteins spon-
taneously before interacting with the translocation apparatus at the ER (196).
Consistent with these data, a fusion protein heterologously expressed in yeast was
folded in the cytoplasm prior to its translocation (192), and based on studies of
luciferase folding in yeast lysates, Bush & Meyer (33) proposed that Ssa1/2p cat-
alyze the folding of preproteins in the cytoplasm before ER targeting. In each
case, however, the preprotein must be unfolded again before it can insert into the
translocation channel. Whether this process is re-engineered by Ssa1p/Ydj1p or
by other chaperones is not clear.

After a nascent secretory preprotein is targeted to the cytosolic face of the
ER membrane, its signal sequence is engaged by the Sec61p translocation com-
plex (169, 197, 214), composed of the Sec61p, Sss1p, and Sbh1p proteins in yeast
(99). High-resolution electron micrographs of both the yeast and mammalian pore
complexes suggest that the Sec61p complex assembles into a tetramer, forming a
central pore that is likely to be the channel through which preproteins are translo-
cated (96). Measurements of truncated preproteins containing fluorescently tagged
amino acids at various positions within the polypeptide indicate that the mam-
malian pore may be as large as 80Å (90), a value somewhat higher than that
obtained by the EM studies (11, 96). Regardless, the pore is of sufficient diameter
to transport polypeptides in anα-helical conformation, or containing some sec-
ondary structure, but not the sizes adopted by most fully folded proteins. Because
the interior of the pore is an aqueous channel (52, 83), transmembrane domains
of integral membrane proteins must laterally diffuse into the lipid bilayer during
their translocation (61, 103, 148, 167).

Elegant biochemical studies using proteoliposomes lacking lumenal compo-
nents indicate that the driving force for cotranslational translocation into the ER
can be provided by the ribosome (149). Thus, the nascent polypeptide is “pushed”
into the lumen. In contrast, lumenal components most likely “pull” polypeptides
into the ER during posttranslational translocation. In yeast, numerous studies have
led to the conclusion that the Hsc70 and Hsp40 homologues, BiP (Kar2p) and
Sec63p, respectively, are responsible for driving polypeptides into the ER (re-
viewed in 24). Yeast BiP is∼50% identical toE. coli DnaK (182, 209), whereas
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Sec63p (a Type III Hsp40) is a polytopic membrane protein in which only one
∼70 amino acid lumenal segment is homologous to DnaJ (68, 213). Strains con-
taining temperature-sensitive mutations inKAR2andSEC63accumulate prepro-
teins at the nonpermissive temperature (210, 252), and microsomes or reconsti-
tuted proteoliposomes prepared fromkar2 andsec63mutant strains are defective
for translocation in vitro (27, 29, 210, 214). A role for BiP during translocation into
washed or reconstituted ER-derived mammalian vesicles has also been suggested
(60, 178).

Two prevailing models to account for the action of the BiP-Sec63p complex
have been proposed, based primarily on studies of the mechanics of posttransla-
tional translocation into isolated mitochondria (reviewed in 24). In the Brownian
ratchet model, the translocation pore is passive and the interaction of the pre-
protein with BiP in the ER lumen prevents retro-translocation (228). Polypeptide
oscillations within the pore provided by thermal energy lead to the emergence of
longer segments of the preprotein in the ER, allowing for a higher stoichiometry
of BiP binding and the prevention of retro-translocation. Support for this model
for translocation into the yeast ER comes from a study by Matlack et al. (149)
in which reconstituted proteoliposomes lacking lumenal components but contain-
ing antibodies against ppαF could support the translocation of ppαF through the
Sec61 complex and into vesicles. This impressive proof-of-principle and a re-
cent mathematical modeling study (139) indicate that a ratchet is sufficient for
posttranslational translocation in a highly defined in vitro system.

The second model depicts the BiP-Sec63p complex as a motor in which suc-
cessive rounds of ATP binding and hydrolysis are coupled to the interaction with,
and pulling and release of, a preprotein in the lumen of the ER (84). Consistent
with this model, mutations in BiP that prevent an ATP-dependent conformational
change and interaction with Sec63p, but not peptide binding, inhibit translocation
both in vivo and in vitro in a dominant manner (152). The motor model may also
be supported by the observations that mitochondrial Hsp70 cannot support ppαF
translocation into ER-derived reconstituted vesicles even though it interacts with
ppαF (25) and that mutations in the BiP-binding domain of Sec63p abrogate BiP
interaction and posttranslational translocation (29, 47, 146). Thus it seems that BiP
must interact with the substrate and be anchored to the inner face of the ER mem-
brane to exert force and pull preproteins into the ER. In contrast, if BiP is simply
a molecular “glue,” its interaction with Sec63p may not be essential for import.
However, an examination of BiP-peptide interactions in the presence or absence of
Sec63p by surface plasmon resonance studies led to the intriguing conclusion that
Sec63p may expand BiP’s peptide-binding repertoire (160). Thus, BiP is bound
near the translocation channel via its interaction with Sec63p in order to receive the
preprotein, and Sec63p, in turn, signals BiP to bind to a wider spectrum of chem-
ically diverse peptide segments. This result resolves the problem of how a single
chaperone can bind either with a high enough affinity or in sufficient amounts to
effect import, given that Hsp70s bind preferably to highly hydrophobic sequences
(18, 70, 211) that may not be abundant in all secreted proteins.
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The original identification of Hsp70 and Hsp40 in bacteria as DnaK and DnaJ—
factors required for the ATP-dependent activation of the DnaB helicase at the repli-
cation origin duringλphage DNA replication (289)—suggests that the BiP-Sec63p
complex may also be thought of as an energy-dependent, regulatory machine. Early
support for this model came from the observation by Sanders et al. (214) that the
interaction of a preprotein with Sec61p at the cytoplasmic face of the ER was
compromised in akar2 mutant at the nonpermissive temperature. This result was
confirmed using a more refined system in which the transfer of a signal sequence-
containing preprotein from the integral membrane signal sequence-binding com-
ponents of the translocation machinery (encoded by theSEC62,SEC71, andSEC72
genes) to the translocation pore could be assessed in a solubilized system (147).
These later studies suggested that BiP activates the Sec62p-Sec71p-Sec72p com-
plex upon its ATP-dependent interaction with Sec63p, although data supporting
an alternate theory have been presented (197). Nevertheless, the retention of BiP
via Sec63p adjacent to the translocation channel may couple the recognition of a
preprotein at the ER membrane, the entry of a preprotein into the channel, and its
subsequent translocation into the ER.

Alternatively, the chaperones may be required to gate the pore. Using an in vitro
assay in which lumenal access of a preprotein confined within the Sec61 complex
could be assessed in mammalian microsomes, Johnson and colleagues showed
that BiP seals the pore until the translocating polypeptide reaches a length of∼50
amino acids. Because the ability of BiP to seal the pore was ATP-dependent, and
because of the recent identification of Sec63p homologues in the mammalian ER
(159, 231, 249), it will be interesting to determine whether BiP-dependent gating
in the mammalian ER is through a direct interaction with Sec61p, or through a
Sec63p homologue.

One expectation from these models is that the chaperones should be required for
both cotranslational and posttranslational translocation: Signal sequence recogni-
tion at the translocation machinery and/or gating of the channel are required re-
gardless of how the preprotein is delivered to the ER membrane. Consistent with
this hypothesis, microsomes derived from thermosensitivekar2andsec63strains
were defective for the import of both a co- and posttranslationally translocated sub-
strate (26). More recently, Stirling and colleagues selected for yeast specifically
defective for the import of a cotranslationally translocated substrate and recovered
mutations primarily inSEC61andSEC63(278). The authors also characterized
further a group ofkar2mutants required for co- and posttranslational translocation
in vitro (26, 214) and confirmed that BiP function is necessary for both pathways
in vivo. The biochemical characterization of the corresponding Sec63 and Kar2
mutant proteins should help elucidate how the lumenal chaperones might regulate
and facilitate co- and posttranslational preprotein import into the ER.

As discussed in the Introduction, the action of Hsp70-Hsp40 pairs can be reg-
ulated further by other co-chaperones. Mutations in a lumenal,∼100-kDa protein
with some homology to Hsp70 (known variably as Lhs1p/Cer1p/Ssi1p) are syn-
thetically lethal with a translocation-defective allele ofKAR2, and strains lacking
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theLHS1/CER1/SSI1gene are unable to posttranslationally translocate some pre-
proteins into the ER (7, 51, 89). In addition, a genetic selection to uncover factors
associated with the translocation machinery inYarrowia lipolyticaled to the iden-
tification of Sls1p, andY. lipolyticastrains deleted forSLS1are defective for the
translocation of a secreted alkaline protease (19). Both theY. lipolyticaSls1 pro-
tein andS. cerevisiaehomologue of Sls1p (known as Per100p, Sil1p, or scSls1p)
interact with the ATPase domain of BiP and regulate its activity (127, 245, 250),
possibly by acting as a nucleotide exchange factor for BiP (127). While dele-
tion of SIL1alone does not compromise translocation (250), suggesting that Sil1p
may modulate another aspect of BiP function inS. cerevisiae, it exacerbates the
translocation defect when combined with a translocation-defectivekar2 mutant
(127). These recent results point to additional chaperone modulators required for
protein translocation.

THE ENDOPLASMIC RETICULUM ENSURES PROPER
FOLDING AND MATURATION

As soon as nascent chains enter the ER they face an environment dramatically
different from that within the cytoplasm, but more similar to that present outside
the cell. As the primary regulator of cellular Ca++ levels (235), the ER possesses a
dramatically higher concentration of free Ca++ than found in the cytosol (1 mM in
the ER compared with 100 nM in the cytosol; 39). Also, the ER is significantly more
oxidizing than the cytoplasm (with a redox potential of –230 mV versus –150 mV;
114), which in turn means that disulfide bond formation is favored within the
ER, whereas disulfide bonds are virtually absent in the cytoplasm (208). In fact,
a hallmark of secretory proteins is the presence of disulfide bonds that in many
cases are absolutely required for folding and/or activity (208). Additionally, many
secretory proteins are N-glycosylated in the ER, a modification frequently required
for proper folding and/or activity (104).

The ER serves as both a protein-folding compartment and a gatekeeper, guaran-
teeing the structural integrity of each protein before it is presented extracellularly
(93, 113). As such, the ER is highly enriched in factors that promote efficient
protein folding and prevent improperly folded proteins from progressing through
the ER. Members of virtually all classes of chaperones, except the Hsp60/GroEL
family, are found within the ER (235). The central role of the most abundant
Hsc70 in the lumen, BiP, in protein folding has been well-documented (81a, 262),
and yeast with reduced levels of lumenal Hsp70 activity exhibit protein folding
defects (228a) and synthetic interactions with mutated alleles of genes encoding
the lumenal Hsp40 chaperones and components of the oligosaccharyl transferase
(179, 218, 242a). BiP most likely aids folding by preventing off-pathway inter-
mediates from forming. Both BiP and another Hsp70 homologue in yeast, Lhs1p
(Hsp170), also play an active role in the re-folding of heat-damaged secreted pro-
teins in the lumen (120, 215).
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Protein folding in the ER presents challenges not faced by the folding of pro-
teins in other cellular compartments. For example, the chemical steps involved
in disulfide bond formation and rearrangement are intrinsically slow compared
to conformational rearrangements. Moreover, partial native structure can dramat-
ically inhibit access to buried cysteines, further slowing disulfide rearrangement
(264). Similarly, transmembrane domains must be inserted with correct topology
into the ER membrane if a protein is to adopt its native structure. This problem
is solved in part through the cotranslational insertion of transmembrane domains.
However, as illustrated by the recently described maturation of aquaporin-1 (144),
transmembrane domains are not always correctly oriented until after synthesis of
nearly the entire polypeptide. How this reversal of topology is accomplished re-
mains obscure. Given these particular demands on folding in the ER, there are,
not surprisingly, several chaperone systems unique to the ER: general chaperones,
such as calnexin and its soluble homolog calreticulin and the machinery respon-
sible for the introduction of disulfide bonds into proteins, as well as chaperones
dedicated to assisting the maturation of a single or a limited number of proteins.

OXIDATIVE PROTEIN FOLDING IN THE ER

Since the classical protein folding studies performed by Anfinsen, it has been clear
that oxidation can proceed spontaneously in an aerobic environment. However,
the observation that protein folding occurs far more rapidly in vivo than in vitro
suggests that protein oxidation must be catalyzed within living cells (1). Indeed,
it was this observation that led to the initial identification of protein disulfide
isomerase (PDI) over 30 years ago as a chaperone that catalyzed the rearrangement
of disulfide bonds (85). Oxidative protein folding in vitro requires only a source
of oxidizing equivalents and an enzymatic activity to rearrange disulfide bonds
(71). These two activities can be supplied by an appropriate redox buffer, usually a
mixture of reduced and oxidized glutathione (GSH and GSSG, respectively), and
PDI. The ratio of GSH to GSSG in vivo varies between the cytoplasm and the
secretory pathway, with the cytoplasm having a ratio of GSH:GSSG of∼100:1
and the secretory pathway having a ratio of∼3:1 (114).

Since glutathione ratios differ between the secretory pathway and the cytoplasm,
the presence of this buffer alone was considered sufficient to maintain an environ-
ment favorable for protein oxidation. However, every disulfide bond formed in a
nascent chain introduces reducing equivalents into the ER that must be disposed
of to keep the environment in an oxidized state. A number of explanatory models
have been proposed, including import of oxidizing equivalents from the cytoplasm,
secretion of reducing equivalents, and different enzymatic activities (71, 114, 287),
none entirely satisfactory.

Work from two labs usingS. cerevisiaehas led to the identification of factors
that are required for proper oxidative protein folding (72, 201). Central to these
studies is the fact that the redox balance of living cells can be manipulated through
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treatment with the membrane-permeable reducing agent dithiothreitol (DTT) (22,
119). Whereas wild-type cells tolerate limited quantities of DTT, cells with defec-
tive oxidation machinery exhibit an increased sensitivity to this drug. Screening
for mutant yeast cells either with an increased sensitivity to DTT (201) or with spe-
cific defects in secretion (72) resulted in the identification of a novel factor, termed
EROxidoreductase 1 (ERO1). This gene is specifically required for oxidative pro-
tein folding, as mutations inERO1result in a folding defect for three substrates
that contain disulfide bonds, while proteins that do not depend on disulfide for-
mation for their folding are secreted with normal kinetics (72, 201). Furthermore,
ERO1activity determines the overall redox balance within cells: Whereasero1
mutation results in DTT sensitivity, overexpression ofERO1leads to increased
resistance to DTT. The central role played byERO1is underscored by the fact that
homologs of the Ero1p protein can be found in all eukaryotic organisms examined
(34, 72, 187, 201).

Much evidence indicates that a direct interaction between Ero1p and PDI
is responsible for the introduction of disulfide bonds in ER lumenal proteins
(Figure 1). First, whereas PDI is normally found in an oxidized state in vivo,
mutations inERO1result in the steady-state accumulation of PDI in its reduced
form (73). Second, mutations in the active-site cysteines of PDI result in the isola-
tion of mixed-disulfide complexes between Ero1p and PDI (73, 248). This complex
is likely to be an intermediate formed in wild-type cells during the oxidation of
PDI by Ero1p. Further support for the conservation of this oxidation machinery is
supplied by the finding that mammalian homologs of Ero1p can also be isolated
in mixed-disulfide cross-links with PDI (13). Even more compelling is the recent
development of an in vitro oxidative folding system in which PDI is a required
component for Ero1p-dependent oxidation of RNase A (248).

What about the role of glutathione in oxidation? Recent genetic and biochemical
data counter the long-held belief that glutathione in the ER served as the source of
oxidizing potential. Kaiser and co-workers removed glutathione from yeast using a
strain lacking a gene required for its biosynthesis,GSH1, and found that oxidative
protein folding was proficient (52a). Surprisingly, this mutation suppressed the
folding defect ofero1-1mutant strains, suggesting that the presence of GSH places
a burden on the oxidation system. Removal of this burden through the deletion of
GSH1allowsero1-1mutant cells to generate enough oxidizing equivalents to grow
again. In an in vitro system, the addition of oxidized glutathione was dispensable
for oxidation of RNase A (248), indicating that Ero1p itself can generate oxidizing
equivalents. Furthermore, the addition of reduced glutathione at concentrations up
to 2 mM had no effect on the ability of Ero1p to oxidize substrates. Also, reduced
glutathione was not oxidized by Ero1p in vitro unless PDI was present, suggesting
that Ero1p does not oxidize glutathione and that the presence of GSSG within the
secretory pathway is in fact a by-product of the reduction of secretory proteins
and/or PDI. This view is consistent with the genetic experiments suggesting that
the role of glutathione in the secretory pathway is actually to prevent overoxidation
(52a).
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Figure 1 Disulfide bonds are introduced into folding proteins through the actions of
Ero1p and protein disulfide isomerase. Oxidizing equivalents are generated on Ero1p
using FAD as a co-factor. These oxidizing equivalents are passed on to PDI, but not other
PDI homologs, which is then able to oxidize substrate proteins. Ero1p cannot oxidize
substrates directly, nor does it directly oxidize GSH. Instead, GSH oxidation appears
to be a consequence of reduction of pre-existing disulfide bonds. See text for details.

An important outstanding question is how oxidizing equivalents are introduced
into the ER. As all redox reactions involve the movement of electrons from one
molecule to another, there must be a “sink” for the excess electrons generated
within the ER. An oxidation system analogous to that in the ER of eukaryotic
cells is found in the periplasm ofE. coli (208). In this system, electrons are
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disposed of through the respiratory chain (134), ultimately passing through ei-
ther cytochrome bo oxidase or cytochrome bd oxidase to oxygen (2a). However,
in contrast to the bacterial oxidation system, when components of the respiratory
chain inS. cerevisiaeare inactivated the oxidation machinery is unaffected (248).
Instead, oxidative protein folding depends exquisitely on cellular levels of FAD.
The significance of FAD was confirmed in vitro, as oxidation of RNase A by Ero1p
required the addition of FAD.

Although FAD is sufficient for oxidation in vitro, its precise role in vivo is not
clear. FAD may act as a co-factor for Ero1p. In this scenario, another protein is
likely to bind Ero1p and catalyze a reaction leading to the regeneration of FAD from
the FADH2 that is produced during the oxidation of PDI. Alternatively, FADH2

may be released, allowing Ero1p to bind a different, oxidized molecule of FAD. In
either case, some mechanism must regenerate FAD within the cell. FADH2 reacts
very rapidly with free oxygen to generate FAD and H2O, but oxidative protein
folding occurs even under anaerobic conditions in a manner that is dependent
on functional Ero1p (248). This suggests that another oxidizing source must be
present. This has also been seen in the oxidizing environment of the bacterial
periplasm, where fumarate acts as the terminal electron acceptor under anaerobic
conditions (2a).

PROTEIN QUALITY CONTROL: RETENTION

The primary step in ER quality control is retention of misfolded or misassem-
bled proteins, and the most common mechanism for retaining misfolded proteins
is through association with other proteins that are themselves normally retained
(65). As the exposure of epitopes rendering a protein susceptible to recognition
by molecular chaperones is a feature likely to be common to all misfolded or
misassembled proteins, chaperones are particularly good candidates for reten-
tion molecules. In fact, the calnexin/calreticulin system (282), BiP (92, 113),
and PDI (207) have been implicated in aspects of quality control (for review,
see 65).

The processing of the core oligosaccharyl glycan in the ER plays a major
role in protein quality control and exemplifies one mechanism by which mis-
folded proteins may be retained in the ER. Initially, a branched chain of sugars of
the composition Glc3Man9GlcNAc2 is added to asparagines within the sequence
motif NX(S/T). However, proteins that fold rapidly in the ER are less prone to
this modification (109), suggesting that a steric block arising from secondary
structures may occlude the consensus sequence. Glycoproteins with the attached
Glc3Man9GlcNAc2 moiety undergo a rapid trimming, in which the three external
glucose residues are removed sequentially through the actions of glucosidase I and
II (104). A single glucose residue can be added back by UDP-glucose:glycoprotein
glucosyltransferase (UGGT; 69, 191), but UGGT only recognizes misfolded pro-
teins. The monoglycosylated glycan is recognized by the lectins calnexin and its
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soluble homolog calreticulin, which retain the glycoprotein in the ER and facili-
tate its folding (104). Removal of the terminal glucose triggers dissociation of the
calnexin/calreticulin-glycoprotein complex and the correctly folded glycoprotein
can then exit the ER (102); however, misfolded proteins are recognized by UGGT
and re-glycosylated, leading to re-association with the lectins and permitting an-
other chance at folding (91). Thus, unlike modification of glycosyl groups in the
Golgi, which is used to create diversity, modification of the basic glycosylation
structure in the ER appears to be used primarily by the quality control machinery
to distinguish folded from misfolded proteins.

Recent studies using a GFP-tagged secretory protein and fluorescence photo-
bleaching experiments in mammalian cells provide evidence for another mecha-
nism of retention: lack of a positive secretion signal. The glycoprotein of vesicular
stomatitis virus (VSVG) is normally secreted; however, a temperature-sensitive
variant of this protein (tsO45) leads to misfolding and ER retention at 40◦C. By
tagging this VSVG mutant with GFP and examining the kinetics of recovery after
photo-bleaching, Nehls et al. observed that the retained protein is highly mo-
bile, with a mobility equivalent to that seen with the mutant protein examined
at the secretion-permissive temperature of 32◦C (175). Furthermore, repetitive
photo-bleaching of cells expressing the mutant VSVG at 40◦C showed a grad-
ual loss of total fluorescence, consistent with a model in which mutant VSVG
cannot be exported from the ER but remains free to diffuse within it. When
cells are depleted of ATP or express an ATPase-defective BiP mutant, the VSVG
mutant becomes immobile. Consistent with previous suggestions from studies
of the influenza hemagglutinin (HA) protein (112), these results indicate that
the ER may form a dense matrix that inhibits the movement of normally mo-
bile proteins. With VSVG, the aggregates were held together by disulfide bonds,
as mobility could be restored through treatment of the cells with DTT
(175).

In their studies of the subcellular localization of VSVG by indirect immunoflu-
orescence, Hammond & Helenius provide another suggestion for how the tempera-
ture-sensitive VSVG might be retained in the ER (92). At the nonpermissive
temperature, VSVG was found throughout the ER as well as in ER-Golgi inter-
mediate compartments. The only marker that co-localized with the VSVG protein
was BiP. When BiP localization was examined in non-transfected cells or in cells
expressing VSVG at the permissive temperature, BiP was seen only in the ER. This
suggests that misfolded VSVG can pull BiP out of the ER, but that VSVG-BiP
complexes are returned to the ER, thus keeping VSVG mutant protein from being
secreted.

Given the broad spectrum of chaperone systems in the ER, how is it determined
which chaperone system is selected by translocating nascent chains? Insight into
this question has come from recent work by Molinari & Helenius, who observed
that the E1 nascent chain of Semliki forest virus associated with BiP, while the
p62 viral nascent chains bound to calnexin (161). If interaction with calnexin was
blocked, both proteins immunoprecipitated with BiP, suggesting that the lack of
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interaction between p62 and BiP was not due to a lack of a suitable BiP binding
site. This hypothesis was confirmed by examining interactions between BiP and
HA, which contains numerous glycosylation sites near its N terminus. Consistent
with glycosylation being the determining factor, the native HA protein did not
bind BiP; however, when the most N-terminal glycosylation sites were mutated,
strong interactions with BiP could be detected. Thus, the presence of N-terminal
glycosylation sites seems to direct nascent chains to the calnexin system, while
the absence of such sites directs nascent chains to BiP.

One of the first recognized needs for a quality control system is in the re-
tention of misassembled protein complexes; polypeptides that normally asso-
ciate with other polypeptides cannot progress through the secretory pathway until
they are bound to their partners (113). A molecular basis for this observation is
suggested by recent studies that analyzed the trafficking of subunits of a mam-
malian ATP-sensitive potassium channel (281). This channel is composed of four
regulatory subunits (known as SUR1/2A/2B) and four potassium ion channel
subunits (known as Kir6.1/2), and proper surface expression of the channel re-
quires the co-expression of all eight subunits. Sequence analysis combined with
mutagenesis identified a sequence, RXR, whose presence blocks the trafficking of
channel subunits to the cell surface and retains them in the ER (281). The similarity
to KKXX motifs, whose presence at the C terminus of transmembrane proteins of
the secretory pathway leads to ER retention (117), suggests that a similar mecha-
nism may prevent the trafficking of proteins containing either motif.

However, unlike KKXX motifs, the use of an RXR motif as a retrieval mech-
anism has been documented only in proteins whose final location is not the ER
(281). Importantly, the RXR motif functions only when present in unassembled or
partially unassembled complexes (281), suggesting that the RXR motif is buried
in the assembled complexes. Thus, the masking of RXR-containing sequences in
the folded or mature state of a protein appears to be the factor that allows the
RXR motif to act in a quality control mechanism, rather than a constitutive reten-
tion mechanism. These results do not differentiate between a retention mechanism
and a retrieval mechanism. A more general role for RXR motifs is suggested by
the observation of several such sequences in the cytosolic loops of CFTR, the
transmembrane conductance-regulator that is responsible for all inherited cases of
cystic fibrosis. When these sequences are altered in a1F508 CFTR mutant, which
is ordinarily retained in the ER, the protein can be secreted (38).

PROTEIN QUALITY CONTROL: ER ASSOCIATED
PROTEIN DEGRADATION (ERAD)

Because unfolded proteins cannot always achieve their native state in the ER,
eukaryotic cells have evolved a constitutively active quality control system to
rid the ER of misfolded proteins. This process, termed ER-associated protein
degradation (ERAD; 154), involves three key steps: (a) recognition of the aberrant
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polypeptide; (b) export of soluble proteins to the cytoplasm back through the
translocation pore (“retrotranslocation”); and (c) degradation by the proteasome.
The conformational diversity of proteins entering the ER and the requirement for
ERAD to selectively degrade only misfolded or regulated proteins suggests that
this process is complex. However, biochemical and genetic studies together are
elucidating the cellular players and mechanisms in this elaborate safety net.

The prevailing evidence suggests that many of the same molecular chaper-
ones involved in folding proteins in the ER are also involved in the removal of
ERAD substrates. Aberrant secretory proteins may have exposed structural mo-
tifs (221, 230, 271) or hydrophobic patches that could prolong chaperone interac-
tions and trigger their destruction. Consistent with this model, the chaperones BiP
(30, 198), calnexin (154), and protein disulfide isomerase (PDI; 82) are required for
the degradation of some ERAD substrates in yeast. In addition, two lumenal Hsp40
homologs in yeast, Scj1p and Jem1p, interact with BiP (179, 218) and help pre-
vent the aggregation of misfolded proteins prior to their retrotranslocation (180).
Biochemical studies indicate that mammalian calnexin prevents the aggregation
of unfolded (and unglycosylated) proteins in solution (115), an activity that also
promotes protein folding in vitro in conjunction with yeast BiP and the Sec63p
J domain (D. Williams, personal communication). Aggregation of ERAD sub-
strates prior to their export would preclude their transit through the translocation
channel.

Is there a signal that distinguishes between slowly folding proteins and those
that are terminally misfolded? Recent studies indicate that competition between en-
zymes that attach or remove sugar moieties may function as a timer for the folding
of individual glycoproteins in the mammalian ER (65, 140). As discussed above,
the trimming of glucose residues on the branched Glc3Man9GlcNAc2 oligosac-
charide triggers dissociation of the calnexin/calreticulin-glycoprotein complex so
that the correctly folded glycoprotein can exit the ER (102). After prolonged re-
tention of a misfolded protein in the ER, the trimming of mannose residues may
divert the protein from the calnexin-catalyzed folding pathway into the degrada-
tion pathway, which may or may not be dependent on further interactions with
calnexin (2, 42, 44, 57, 140, 244, 274). Consistent with this model, degradation of
a yeast ERAD substrate, a mutated form of the vacuolar-targeted carboxypep-
tidase Y (CPY∗), depends upon glycosylation and requires the mannosidase I-
generated Man7GlcNAc2 moiety (118, 133), but there is limited evidence for a
calreticulin or calnexin binding cycle inS. cerevisiae. Instead, factors like the
recently identifiedα-mannosidase-like protein, Mnl1p, may identify glycopro-
teins containing Man7GlcNAc2 linkages as ERAD substrates (172). In contrast,
Schizosaccharomyces pombecalnexin is essential and more homologous to cal-
nexin in higher eukaryotes (121, 189), and glucosyltransferase activity is required
for S. pombeviability under stress conditions (66). If the calnexin/calreticulin cycle
is a general feature of ERAD, an as yet undiscovered lectin must target glycopro-
teins containing trimmed mannoses for ERAD. However, not all ERAD substrates
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are glycosylated, suggesting the existence of multiple mechanisms for identifying
terminally misfolded proteins.

The export of soluble ERAD substrates occurs by retrotranslocation (or disloca-
tion) through the Sec61p translocation pore. The strongest evidence supporting this
hypothesis is the stabilization of yeast ERAD substrates in vitro (195) and in vivo
(198, 285) insec61mutant microsomes or cells, respectively. Despite using the
same channel and requiring BiP, the isolation of ERAD-specific mutations inKAR2
(BiP; 30) andSEC61(273, 285) suggests that translocation and retrotranslocation
are mechanistically distinct. As mentioned above, Sec63p is an Hsp40 homolog
that cooperates with BiP in the import of proteins into the ER, but it appears to
play a less prominent role in ERAD (180, 195, 198). Conversely, Scj1p and Jem1p
are required for ERAD but not for translocation (180). In addition, because signal
sequences are cleaved concomitant with translocation, there must be a different
mechanism for targeting ERAD substrates to the lumenal face of the Sec61 pore.
Several studies suggest that BiP may deliver misfolded proteins to the Sec61 chan-
nel (30, 132, 221, 230) and perhaps gate the pore to regulate opposing traffic (90a,
200). Römisch and coworkers also propose a role for PDI in targeting one ERAD
substrate to BiP at the translocation pore (82), and Norgaard et al. (181a) report
that expression of any one of four other PDI homologues restores ERAD activity
in yeast lacking PDI.

The mechanism(s) governing export and degradation of transmembrane pro-
teins from the ER may be distinct from that controlling the ERAD of soluble
proteins. Membrane proteins, like soluble proteins, might exit the ER through
the Sec61 channel because they can be co-immunoprecipitated with a compo-
nent of the mammalian ER translocation channel (9, 58, 268) or are stabilized in
sec61mutant yeast (199, 285). However, some transmembrane proteins may be
directly extracted by the proteasome (150, 255a) or attacked by other proteases
(67, 78, 143, 165, 168, 269, 272). The proteasome might also “shave” the cytoplas-
mic portions of integral ER membrane proteins, as Jentsch and colleagues have
recently reported that the proteasome may be able to clip polypeptide “loops”
(111). The resulting transmembrane domains might be unstable and spontaneously
dissociate to the cytoplasm or could be cleaved further (263). In addition, BiP is
not required to degrade four known transmembrane ERAD substrates, whereas
the cytosolic hsc70 Ssa1p is necessary to degrade the integral membrane proteins
Ste6p∗, CFTR and Vph1p (105, 199, 283; S. Michaelis, personal communication)
(see Table 1). In contrast, Ssa1p is dispensable and BiP is required for the ERAD
of three soluble proteins, PαF, carboxypeptidase Y (CPY∗), and mammalianα-1
protease (A1PiZ) in yeast (Table 1). We have suggested that Ssa1p may be required
to prevent aggregation of the large cytoplasmic domains in these transmembrane
proteins (283). Consistent with this hypothesis, the degradation of Sec61-2p, which
contains significantly fewer amino acids in the cytoplasm than the other transmem-
brane ERAD substrates described above, is only modestly affected inssa1mutant
cells (180).
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TABLE 1 ERAD requirements for substrates in yeasta

Soluble Integral membrane

Substrate Required Dispensable Substrate Required Dispensable

PαF BiP Ssa1p Ste6p∗ Ssa1p BiP
PDI Ubiquitination Ubc6/7p
Sec61p Sec63p
Cne1p Scj1p CFTR Ssa1p BiP
Scj1p/Jem1p Cer1p/Lhs1p/ Ubc6/7p Cne1p

Ssi1p
Hsp90
Ssh1p Vph1p Ssa1p BiP
Eug1p

Hmg2p Ubc7p Der1p
CPY∗ BiP Ssa1p Hrd1p/Der3p Ubc6p

Png1p Cne1p
Der1p PDI Sec61p Der3p/Hrd1p Scj1p/Jem1p
Hsp90 Ubc6/7p
Der3p/Hrd1p Cue1p
Hrd3p
Sec61p Pdr5p∗ Hrd3p BiP
Cue1p Ubc6/7p Der1p
Pmr1p Der3p/Hrd1p
Sec63p Sec61p
Mns1p
Scj1p/Jem1p
Ubc6/7p

A1PiZ BiP Ssa1p

aUpdated from Brodsky & McCracken (28a).

Multiple studies indicated that ERAD substrates are degraded in the cytoplasm
by the proteasome (16, 94, 107, 122, 184, 204, 232, 265, 268). This complex prote-
olytic machine consists of a catalytic 20S cylindrical core particle and two copies of
the 19S (PA700) regulatory particle that “caps” the 20S subunit (6). Ubiquitination
is necessary for proteasomal processing of most (17, 95, 107, 122, 142, 260, 285),
but not all ERAD substrates (156, 265, 279). Two ubiquitin-conjugating enzymes,
Ubc6p and Ubc7p (16, 17, 107, 232), and a ubiquitin ligase, Hrd1p/Der3p (8, 55,
79), reside at the yeast ER membrane and are required to degrade many ERAD
substrates (see Table 1). In addition to targeting substrates to the proteasome, ubiq-
uitination is also required for the retrotranslocation of some proteins (16, 20, 58).
Likewise, Mayer and colleagues (150) and Plemper et al. (199) were unable to
detect cytosolic, ubiquitinated forms of ERAD substrates in yeast proteasome mu-
tants. The proteasome may provide the energy, via its six resident ATPases, to di-
rectly extract ERAD proteins concomitantly with their ubiquitination (150, 255a).
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Before interacting with the proteasome, ERAD substrates are de-glycosylated
and de-ubiquitinated and must be unfolded to fit through a small aperture at the
tip of the catalytic core of the proteasome (239, 268; reviewed in 253). The 19S
subunit of the proteasome is a molecular chaperone, capable of binding and pre-
venting the aggregation of unfolded proteins (23, 236). In addition, other cytosolic
molecular chaperones including Ssa1p (see above) and Hsp90 (77, 88, 116, 222)
may maintain ERAD substrates in an aggregation-free state for attack by the pro-
teasome or help deliver substrates to the proteasome, as these chaperones have
been found associated with the yeast 19S subunit (251). In mammalian cells, a
putative E3 ubiquitin ligase, CHIP, could mediate the delivery of misfolded pro-
teins from these cytosolic chaperones to the proteasome (4, 46, 157). Likewise,
the mammalian nucleotide exchange factor BAG-1 may help target hsc70-bound
substrates to the proteasome (108, 145).

The elucidation of the ERAD pathway provided a model for how several toxins
are able to transit from the ER to the cytoplasm (101). These toxins, which in-
clude ricin, pertussis toxin, Shiga toxin,Pseudomonasexotoxin A, cholera toxin,
and yeast killer toxins, enter host cells through the endocytic pathway and ulti-
mately reside in the ER by virtue of harboring ER retrieval sequences at their
C termini. Once in the ER, they are exported to the cytoplasm via the Sec61
channel (64, 220, 229, 266). Consistent with the ERAD machinery being required
for toxin action, yeast containing mutations in the genes encoding BiP and cal-
nexin exhibit increased resistance to the K28 killer toxin (64), and prior to ex-
port, PDI is required for toxin unfolding (246). Inhibition of proteasome
activity sensitizes both yeast and mammalian cells to toxins (229, 266), sug-
gesting that a fraction of the retro-translocated toxin is recognized as an ERAD
substrate. However, most of the toxin may escape degradation because
the proteins are lysine-poor (101), thus minimizing their probability of being
ubiquitinated.

Additional components of the ERAD machinery have been identified in three
independent yeast genetic screens. Stabilization of hydroxymethylglutaryl-co-
enzyme A reductase (HMG-R) in mutant yeast strains (94) led to the discovery
of Hrd1p (also known as Der3p, see below) and Hrd3p, which form a stoichio-
metric complex spanning the ER membrane (79) and preferentially ubiquitinate
misfolded proteins (8). Also identified in this screen was Hrd2p, a component of
the 19S regulatory subunit of the proteasome. A screen by Wolf and coworkers for
mutants in which CPY∗ is stabilized uncovered threeDERgenes, (see above; 133).
Der1p is an integral ER membrane protein of unknown function (133) andDER2
andDER3encode for Ubc7p and Hrd1p, respectively, factors involved in ERAD
(20, 133). Finally, mutants that accumulate a heterologously expressed variant of
the mammalian ERAD substrate, Alpha-1 protease inhibitor (AlPiZ; 204), have
identified seven complementation groups that may represent novel genes involved
in ERAD (155). Combining the continued analysis of these and other genes re-
quired for ERAD with powerful biochemical tools will ensure a finer dissection
of the ERAD pathway.
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THE UNFOLDED PROTEIN RESPONSE (UPR)

A primary mechanism by which eukaryotic cells counteract the accumulation of
misfolded proteins within the lumen of the ER is the unfolded protein response
(UPR). This response was initially recognized in mammalian cells by the induction
of a specific set of proteins in response to glucose starvation, which results in pro-
tein misfolding through the under-glycosylation of nascent polypeptides (39). The
proteins induced through this treatment were designated GRPs as a consequence
of their glucose regulation (e.g., GRP78 was the original name given to BiP), and
consisted largely of molecular chaperones. Other treatments were soon discovered
that increased the transcription of the same set of genes, including tunicamycin
(an inhibitor of N-linked glycosylation), DTT, and calcium-ionophores. However,
other general stress conditions, including heat shock, do not induce the expression
of the same set of genes. This stereotyped response to ER-specific folding stressors
is shared among all eukaryotic cells.

Rapid progress in detailing the mechanism of UPR activation became possible
with the discovery of this response inS. cerevisiae. A promoter element, termed
the UPRE, was found upstream of UPR targets inS. cerevisiae(164) and was sub-
sequently used to begin genetically defining the signaling pathway between the
ER and nucleus that is responsible for activation of UPR target gene expression
(48, 163). The first screens identified molecules at the extreme ends of the sig-
naling pathway (Figure 2). The signal originates in the lumen of the endoplasmic
reticulum with the activation of the transmembrane serine/threonine kinase Ire1p
(48, 163). When unfolded proteins begin to accumulate in the ER, the Ire1p kinase
dimerizes and is autophosphorylated intrans (224). At the other end of the sig-
naling pathway lies Hac1p, a member of the bZIP family of transcription factors
(49, 162). Both factors are absolutely required for UPR induction, as deletion of
either gene results in a strain unable to increase the expression of known UPR
targets in response to ER folding stress.

The discovery of the pathway linking Ire1p and Hac1p awaited the convergence
of a number of different observations. First,HAC1 mRNA migrates differently
when isolated from UPR-induced or noninduced cells (49, 162). Second, Hac1p
can only be detected in cells under conditions that induce the UPR (49, 162).
Finally, another genetic screen implicatedRLG1, a tRNA ligase, in induction of
the UPR (226). When combined with the observation that Ire1p contains a domain
with homology to nucleases (48, 163), a model emerged in which Ire1p becomes
an active nuclease when unfolded proteins accumulate within the ER. Ire1p then
cleaves the transcribedHAC1message (termedHAC1u) at specific locations near
the 3′ end, removing a nonconventional intron (130, 227). The alternative splicing
of the HAC1 mRNA is completed through the action of Rlg1p, which ligates
the alternative exon to theHAC1 message, forming a new message designated
HAC1i (226, 227). Only the protein encoded by the alternatively spliced message
accumulates in cells. This reaction has since been reconstituted in vitro using only
Ire1p,HAC1mRNA, and Rlg1p (86).
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Figure 2 A schematic model of the unfolded protein response pathway as de-
fined in the yeastS. cerevisiae.Upon the accumulation of unfolded proteins within
the ER, Ire1p becomes activated through dimerization. This initiates an alternative
splicing event, ultimately producing theHAC1i mRNA. Only theHAC1i message
is efficiently translated. The Hac1p protein enters the nucleus, binds to promoter
elements upstream of the UPR target genes, and activates their transcription. Al-
though Ire1p is depicted here with its endonuclease domain localized to the nucleus,
this has not been demonstrated experimentally. See text for details (modified from
223a).

One model to explain how cells might sense unfolded proteins predicts that
BiP binds to the Ire1p lumenal domain during normal growth, preventing the
dimerization of Ire1p molecules. As unfolded proteins accumulate in the ER,
increasing amounts of BiP are recruited from Ire1p. Eventually, Ire1p dimer-
izes, initiating the UPR signaling pathway. This model was recently tested by
Ron and co-workers (15), who detected a physical association between Ire1p and
BiP in extracts from a rat pancreas–derived cell line under normal growth con-
ditions; under conditions of UPR induction, a physical interaction between Ire1p
and BiP was absent. A similar mechanism is also likely to exist in the yeast ER
(186).
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The pathway leading to UPR activation in mammalian cells is more complex
than that inS. cerevisiaeand has been less clearly defined. A number of groups
have identified Ire1p homologs in higher eukaryotes, including Ire1α (identified
in humans) (243), Ire1β (identified in mouse cells) (258), and PERK (98, 225).
Whereas both Ire1α and Ire1β show homology to Ire1p throughout their entire
lengths, PERK is homologous to Ire1p only in its ER lumenal domain and has a
kinase domain more like that of eIF2α than that of Ire1p. Consistent with these data,
Ire1α, Ire1β, and PERK respond to the same inducers, but diverge in the down-
stream signaling events that they mediate. Whereas Ire1α and Ire1β induce the
expression of BiP and CHOP (another UPR target), PERK responds to the accu-
mulation of unfolded proteins by phosphorylating eIF2α, leading to a decrease in
translation (98).

In contrast to the situation inS. cerevisiae, activation of the mammalian UPR
appears to involve a proteolysis step at the level of Ire1 activation. Upon stimulation
of the UPR, both Ire1α and Ire1β are cleaved from the membrane, and the newly
released, soluble form redistributes to the nucleus (181). This redistribution seems
to depend on the activity of presinilin-1 (PS1), as cells lacking PS1 activity are
unable to produce the soluble form of Ire1. In addition, in at least some cell lines,
lack of PS1 decreases the level of UPR induction as measured by BiP expression
(129, 181). However, although two groups have observed a role for PS1, a third
report finds no effect of PS1 on UPR activation (216). As the conditions used in
these experiments are not identical, the full significance of PS1 in UPR activation
will await future experiments.

Proteolysis has also been implicated in the activation of at least one tran-
scription factor responsible for the ER stress response in metazoan cells. ATF6,
a Type-II transmembrane protein, is cleaved into two fragments in response to
treatments that lead to the accumulation of misfolded proteins, and the released
cytosolic domain translocates into the nucleus and induces the transcription of sev-
eral chaperones (31, 100). Goldstein and co-workers subsequently demonstrated
that S1P and S2P, the proteases responsible for cleavage of the sterol-starvation
transcription factors of the SREBP family, are necessary for cleavage of ATF6
and for a normal ER stress response (276). However, unlike the SREBP tar-
gets of S1P and S2P, sterols do not affect activation of gene expression through
ATF6.

At this point, the relationship between the ATF6 and IRE1α/IRE1β pathways
is unclear. Data from Kaufman and co-workers suggest that ATF6 activation lies
downstream of Ire1α activation and that the response to ER stress begins with ac-
tivation of Ire1α (259). However, ATF6 does not appear to be alternatively spliced
under conditions of ER stress (277). As both Ire1α and Ire1β show homology to
the nuclease domain ofS. cerevisiae IRE1(243, 258), another transcription factor
in mammalian cells, yet to be identified, may be activated in the same fashion
asHAC1 in S. cerevisiae. Indeed, both Ire1α and Ire1β can cleave yeastHAC1
mRNA in vitro (181, 243).
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INTERACTION BETWEEN THE UPR AND ERAD

Although the initial characterization of the UPR suggested that its targets would
be limited to chaperones and factors required to maintain ER homeostasis, such
as lipid biosynthesis (50), a growing body of evidence now suggests that the UPR
regulates many aspects of secretory pathway function. By taking advantage of
the genetic requirements of UPR activation inS. cerevisiaeand oligonucleotide
microarray technology, a list has been compiled detailing the breadth of the tran-
scriptional output of the UPR (37, 245). From this analysis, nearly 400 genes were
identified as UPR targets, of which 208 were of known or inferred function. Of
these 208 genes, approximately half play roles in the secretory pathway. Thus,
genes encoding chaperones that exist entirely outside the secretory pathway in
yeast, such as Hsp104, Hsp60, and Hsp90, were not identified as UPR targets.
Of chaperone families with members found in every cellular compartment, only
those genes encoding ER-localized chaperones were identified as UPR targets. For
example, of the 15 DnaJ homologs encoded in the yeast genome, only the three
homologs encoding ER-localized DnaJ homologs are induced by the UPR. The
functional categorization of UPR targets is depicted in Figure 3.

The UPR activates the expression of genes encoding proteins acting through-
out the secretory pathway and spanning virtually all activities. How these UPR-
induced targets improve the state of folding within the ER is unclear. The various
activities induced by the UPR may well act in concert to reduce the lumenal con-
centration of misfolded protein, by either directly refolding proteins or removing
them from the ER. This “fix or clear” model suggests that all activities required
for folding are up-regulated, such that chaperones bind to misfolded species, pre-
vent aggregation, and promote folding, while glycosylation enzymes assist in the
folding of proteins that require carbohydrate modification to attain their proper
conformation. Consistent with this suggestion, mutations that compromise either
addition of GPI anchors or protein glycosylation are lethal in the absence of UPR
function (177). Moreover, UPR induction in mammalian cells accelerates synthe-
sis of the dolichol-oligosaccharides employed in asparagine-linked glycosylation
(62).

In addition to up-regulating factors that directly promote folding, UPR activa-
tion may also induce factors to clear misfolded proteins from the ER. The induc-
tion of specific COPII or coatomer components might facilitate the packaging of
cargo proteins into anterograde vesicles, or simply increase the overall capacity
of anterograde transport. This increase in anterograde transport might catalyze the
passage of misfolded species to the vacuole for degradation (110, 137), consistent
with the observation that several genes involved in vacuolar targeting are also UPR
targets, or the retrieval of ERAD substrates from the Golgi that must be returned
to the ER for degradation (D. Ng, personal communication). Similarly, induction
of lipid synthesis may lead to an increase in the volume of the ER, diluting the
concentration of unfolded proteins. Finally, the induction of ERAD components
directly enhances the clearance of misfolded proteins from the ER.
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Figure 3 Many aspects of secretory pathway function are transcriptionally induced by the
UPR. A schematic diagram of the secretory pathway is shown. The number of genes whose
function is either known or can be inferred from homology to characterized genes is indicated
underneath each functional category (reproduced from 245).

The link between the UPR and ERAD suggests the existence of a previously
unrecognized connection between two pathways that deal with the consequences
of misfolded proteins. Mechanistic studies from a number of research groups
have now confirmed the physiological significance of these findings. First, effi-
cient ERAD requires an intact UPR. In particular, deletion ofIRE1decreased the
ERAD of CPY∗ (245) and MHC class I heavy chain (H-2Kb) in yeast (37). Sec-
ond, loss of ERAD function leads to chronic UPR induction. Mutants defective for
CPY∗ degradation show a small but significant induction of the UPR (75, 133, 245).
Alleles of SEC61with specific defects in ERAD, as well as deletions of several
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other ERAD components, also caused constitutive UPR induction (285). Thus,
the chronic accumulation of misfolded proteins in the ER appears to be a general
consequence of loss of ERAD. Third, simultaneous loss of ERAD and UPR func-
tion greatly decreases cell viability. For example, Ng and co-workers conducted a
screen to identify genomic mutations that are synthetically lethal with loss of the
UPR (177). A large panel of mutants were isolated and were then further classified
based on functional analysis. Analysis of the rate of CPY∗ degradation indicated
that one third of the identified mutants have defects in ERAD. The functional signif-
icance of this genetic interaction is emphasized by the synthetic lethality between
mutations of genes in the UPR pathway and in a number of components required
for ERAD [SON1, UBC1, UBC7, HRD1, HRD3, andDER1(75, 177, 245)] that
act at multiple steps in the ERAD pathway.

In sum, these findings suggest that protein folding in the ER is inefficient,
and the removal of misfolded proteins is an essential process performed together
by the UPR and ERAD machineries. In the absence of the UPR, ERAD deals
with the consequences of protein misfolding by retro-translocating these species
to the cytoplasm where they are degraded. Conversely, in the absence of ERAD,
the UPR deals with the consequences of protein misfolding by activating the
expression of factors involved in protein folding, anterograde vesicular transport,
or an alternate site of degradation, such as the vacuole. Thus, the UPR and ERAD
systems provide partially overlapping functions in the same essential process: the
removal of misfolded proteins from the ER.

SUBSTRATE-SPECIFIC CHAPERONES

Several genes identified in yeast are required for the biogenesis of specific secreted
proteins. Although the genes do not encode classical chaperones, and in many
cases their specific functions are unknown, they apparently evolved to facilitate
the folding or quality control of selected secreted substrates. This class of protein
was first recognized genetically through the identification of a mutant strain of
yeast that showed defects in amino acid uptake. The gene implicated in this study,
identified asSHR3, was found to be ER-localized, and resulted in retention of
amino acid permeases in the ER (141). Several substrate-specific chaperones have
subsequently been identified inD. melanogaster, S. cerevisiae, C. elegans, and
mammalian cells, all of which are ER-localized and required for proper secretion
of only one or a subset of proteins (reviewed in 65).

In most cases, the level at which the proteins act is not clear; they may be
required for folding or secretion, or they may act as a specific quality control
mechanism. For example, Naik & Jones (171) screened for mutants defective
for the processing of the vacuolar-targeted proteinase B (Prb1p) and isolated a
gene encoding an ER-localized, integral membrane protein named Pbn1p. Two-
hybrid analysis indicated that Pbn1p interacts with the Prb1p pro-peptide.PBN1
is essential, unlike the gene encoding its substrate (PRB1), suggesting that Pbn1p
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may play a role in the biogenesis of essential factors and/or that it is required for
ER homeostasis. Interestingly, Prb1p becomes an ERAD substrate when Pbn1p
function is ablated.

In contrast, in at least two other cases, homology between the substrate-specific
chaperone and a class of general chaperones implies that the required activity is
indeed related to protein folding. One example of a substrate-specific chaperone
with homology to a specific chaperone class is a PDI homolog (EPS1) whose
activity was identified in studies of the yeast plasma membrane ATPase, encoded
by thePMA1 gene. A dominant mutation was described that prevented the ER
export of both the mutant and wild-type forms of the Pma1 protein from the ER,
which became ERAD substrates. Wang & Chang (256) screened for suppressors
of the dominant phenotype and uncovered the nonessential gene,EPS1. Wild-type
and mutant Pma1p are stabilized in cells deleted forEPS1because they are no
longer retained in the ER, suggesting that Eps1p is a quality control gatekeeper in
the ER, preventing the secretion of misfolded Pma1p.

The second example involves the PPIase homologninaAthat was identified in
studies of rhodopsin folding inD. melanogaster(45, 233).ninaAmutant flies show
a greatly reduced level of rhodopsin in the outer photoreceptor cells. Upon closer
examination, it was observed that only the Rh1 and Rh2 rhodopsins were affected
by the lack ofninaA activity, while the Rh3 rhodopsin was not (233). Cloning
of ninaA revealed that it was a transmembrane protein and highly homologous
to vertebrate cyclophilin. Like other substrate-specific chaperones, mutation of
ninaA results in the accumulation of its substrates in the ER, although rhodopsin
was also found in vesicles distributed throughout the cytoplasm (45).

Although little is known about the substrate-specific chaperones, they are clearly
a growing class of proteins with important roles in the maturation of a wide variety
of secretory proteins. These proteins provide a unique insight into the particular
demands on protein folding in the secretory pathway. More generally, an un-
derstanding of substrate-specific chaperones might reveal previously overlooked
aspects of protein folding in the ER.

SUMMARY

By virtue of their endogenous biochemical properties and their promiscuity, chap-
erones have adapted as critical factors in the eukaryotic secretory pathway. Not
only do molecular chaperones act as central players in each of the processes dis-
cussed in this review, but an individual chaperone may play critical roles in several
of these processes, sometimes simultaneously. This has complicated genetic anal-
yses of chaperone action in the cell. However, the isolation of mutants that are
specifically defective for a single process, and/or the use of strong, conditionally
acting mutants, has permitted a better molecular dissection of chaperone action
during protein secretion. Equally powerful has been the use of in vitro assays
in which the functions of wild-type and mutant chaperones can be ascertained
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in defined systems. The continued development of biochemical assays that mea-
sure unique aspects of secretory pathway function, combined with the isolation
and construction of new mutants, should permit researchers to define further how
chaperones can exert their pleiotropic effects. In addition, a relatively recent, but
rapidly progressing field is the solution of chaperone structures using biophysi-
cal techniques. Such undertakings will further catalyze biochemical and genetic
experiments.
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211. Rüdiger S, Germeroth L, Schneider-
Mergener J, Bukau B. 1997. Substrate
specificity of the DnaK chaperone de-
termined by screening cellulose-bound
peptide libraries.EMBO J.16:1501–7
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