
miRNAs on the move: miRNA biogenesis and the RNAi machinery
Elizabeth P Murchison and Gregory J Hannon1

Recent advances have led to a more detailed understanding of

RNA interference and its role in microRNA biogenesis and

function. Primary microRNA transcripts are processed by the

RNaseIII nuclease, Drosha, and are exported from the nucleus

by Exportin-5. Dicer cleaves microRNAs into their mature

forms, which can be incorporated into effector complexes that

mediate gene silencing activities. The 30 two-nucleotide

overhang structure, a signature of RNaseIII cleavage, has been

identified as a critical specificity determinant in targeting and

maintaining small RNAs in the RNA interference pathway.

MicroRNA functional analyses and genetic and biochemical

interrogation of components of the pathway are starting to

provide a glimpse at the range of biological processes and

phenomena regulated by RNA interference.
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Abbreviations
dFMR1 Drosophila fragile X mental retardation protein

dsRNA double-stranded RNA
ES embryonic stem

FMRP fragile X mental retardation protein

miRNA micro-RNA

nt nucleotide

pre-miRNA precursor miRNA

pri-miRNA primary miRNA

RISC RNA-induced silencing complex

RITS RNA-induced initiation of gene transcriptional gene

silencing

RNAi RNA interference

siRNA small interfering RNA

SMN survival of motor neuron protein

VIG Vasa intronic gene

Introduction
RNA interference (RNAi) is a gene regulatory pathway

triggered in response to double-stranded RNA (dsRNA)

[1]. Since it was first formally described in Caenorhabditis
elegans, RNAi has been found to exist in many eukaryotic

organisms, and to be involved in an extraordinary number

of gene-silencing phenomena [1,2]. The RNAi machinery

consists of a conserved core of factors with roles in

recognizing, processing and effecting responses to

dsRNA. Although a great variety of dsRNA triggers and

responses have been described, the characteristic hallmark

of the process is the cleavage of dsRNA into �22nt

dsRNAs by the nuclease Dicer, and the subsequent

incorporation of these small dsRNAs into a complex

containing members of the Argonaute family of proteins.

MicroRNAs (miRNAs) are a growing family of small non-

protein-coding regulatory genes found in many eukaryo-

tic organisms. miRNAs are processed via the RNAi

machinery, and some have been shown to regulate the

expression levels of homologous target-gene transcripts.

miRNAs were first described in C. elegans; these are lin-4

and let-7, both of which target the 30 untranslated regions

(30 UTRs) of developmental transcription factors and

suppress their translation [3–6]. As more miRNA:target

pairs were described, it became apparent that regulation

of development might be a common theme in miRNA

biology; miRNAs and their targets have been found to

affect diverse processes, including flowering time and leaf

patterning in Arabidopsis, neuronal asymmetry in C. ele-
gans, and developmentally regulated cell proliferation

in Drosophila [7–11]. Recently a number of algorithms

have been described that aim to predict miRNA targets

[12�–15�], and in mammals miRNAs are predicted to

control a surprisingly wide variety of genes, thus impact-

ing many aspects of biology [12�]. This review will focus

on recent advances in our understanding of RNAi path-

ways and miRNA biogenesis.

miRNA production and trafficking
miRNA genes are often located in clusters that may be

transcribed as polycistrons [16]. Although neither miRNA

promoters nor the RNA polymerase responsible for

miRNA transcription have been characterized, it is clear

that miRNA genes are often under strict developmental-

stage- and tissue-specific control [17�,18–21]. Many pri-

mary miRNA transcripts (pri-miRNAs) are predicted by

computer algorithms to undergo folding into elaborate

stem-loop structures [22–24,25��]. Cleavage of the stem-

loops by the RNase III enzyme Drosha liberates �70-nt

precursor miRNAs (pre-miRNAs) [26��] (Figure 1a).

Drosha is one of three characterized RNaseIII family

enzymes in the human and mouse genomes [27]. Initially

described in Drosophila, Drosha mapped to a region

containing microdeletions co-segregating with embryonic

lethality [28]. The enzyme contains a proline-rich region,

an arginine–serine-rich domain and two canonical

C-terminal RNaseIII domains [29]. The RNaseIII

domain structure of Drosha is similar to Dicer, but, unlike

www.sciencedirect.com Current Opinion in Cell Biology 2004, 16:223–229



Drosha, Dicer’s second RNase III domain is thought to

be partly inactive as it contains substitutions at critical

active-site residues [30]. Drosha is found almost exclu-

sively in the nucleus of HeLa cells, and appears to be

concentrated in the nucleolus during S-phase. Initial

functional characterization of Drosha suggested that

the enzyme is required for preribosomal RNA processing,

as Drosha knockdown using antisense RNA led to a

substantial loss of HeLa cell viability with an accumula-

tion of 12S and 32S precursor rRNAs [29]. Drosha

emerged as a principle player in miRNA biogenesis when

it was discovered that Drosha could cleave pri-miRNAs to

pre-miRNAs in S2 cell extracts, and Drosha small inter-

fering RNA (siRNA)-mediated deficiency in HeLa cells

led to accumulation of pri-miRNA precursors [26��].

The mechanism by which Drosha establishes specificity

for primary miRNA transcripts remains a subject for

speculation at present, but it seems likely that, given

the exquisite secondary structures predicted to be formed

by miRNA precursors, Drosha may have some affinity for

hairpin loops. The ribosomal precursors processed by

Drosha also have characteristic secondary structures.

Alternatively, Drosha may be recruited to miRNA tran-

scripts via intermediate factors that specifically recognize

pri-miRNA.

Drosha homologs can be found in the mouse, human, C.
elegans and Drosophila genomes [27]; however, the notable

absence of Drosha homologs from several RNAi-compe-

tent organisms, including Schizosaccharomyces pombe and

Arabidopsis, suggests that Drosha may be a more recent

addition to the RNAi pathway. In Arabidopsis, this is

particularly puzzling, as pri-miRNAs must be processed

to pre-miRNAs, presumably in the nucleus. However, it

is possible that in plants Drosha’s role is filled by one of

the several Dicer homologs, some of which are nuclear

[31]. The existence of miRNAs in S. pombe remains

unproven, although a sequence motif has been described

that defines a group of genes that are upregulated in

RNAi mutants [32]. In this latter case, the absence of a

Drosha enzyme could simply reflect the absence of an

miRNA pathway altogether.

Pre-miRNAs of �70nt that are produced by Drosha have

the characteristic two-nucleotide 30 overhang end struc-

ture left by the staggered cut of RNase III enzymes.

Recent studies have shown that Exportin-5 mediates the

nuclear export of pre-miRNAs in a Ran–GTP dependent

manner [33�–35�]. Interestingly, Exportin-5-mediated

nuclear export of another cargo RNA, the adenovirus

VA1 noncoding RNA, also requires a two-to-three-

nucleotide 30 overhang [36], suggesting that the structural

Figure 1
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A model for microRNA biogenesis, trafficking and assembly into RISC. (a) miRNAs are transcribed in the nucleus and pri-miRNAs are processed

by Drosha into miRNA precursors, which have the two-nucleotide 30 overhang characteristic of RNaseIII cleavage. (b) The two-nucleotide 30

overhang end structure of the miRNA precursor is recognized by Exportin-5, a Ran–GTP-dependent nuclear export factor. The miRNA is transported

into the cytoplasm. (c) The miRNA precursor is cleaved by Dicer, which probably uses the PAZ domain to specifically recognize and bind the

two-nucleotide 30 overhang. Dicer cleavage of the miRNA precursor liberates a �22 nt mature miRNA. Having been processed by two RNaseIII
enzymes, the miRNA now has symmetrical end structures.
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determinates of Exportin-5 recognition may be implicit

in Drosha processing (Figure 1b).

Dicer
Entry into the cytoplasm brings pre-miRNAs into contact

with Dicer, a predominantly cytoplasmic enzyme [37–

39]. Dicer cleaves pre-miRNAs into mature �22mer

miRNAs (Figure 1c); it can also cleave dsRNA into

�22mer siRNAs [3,40–43]. Dicer is a modular enzyme

composed of two RNaseIII domains, a DExH/DEAH box

RNA helicase domain and a PAZ domain as well as a

domain of unknown function (DUF283) and a double-

stranded RNA-binding motif [40].

The DExH/DEAH box family of ATP-dependent RNA

helicases has a central and essential role in the RNAi

machinery. The Dicer helicase domain itself is highly

conserved in all Dicer enzymes [44], even though its

ATP-binding domain has been found to be dispensable

for the activity of recombinant mammalian Dicer in vitro
[39,45]. Additionally, several accessory RNA helicases

have been shown to be involved in RNAi in several

organisms. For example, a conserved helicase has been

found to interact with RDE-4, a double-stranded-RNA-

binding protein essential for RNAi in C. elegans [46], and

another worm RNA helicase, mut-14, is required for gene

silencing induced by antisense oligos [47]. The Drosophila
RNA helicase Spindle-E (homeless) is required for RNAi

activation upon oocyte maturation [48]. Spindle-E is also

essential for silencing retrotransposons, targeting hetero-

chromatin to transgene arrays, and for silencing the stel-

late repeat locus in the testes [49–51]. In mammalian

cells, Gemin3, an RNA helicase and component of

‘gems’, nuclear bodies enriched in SMN (survival of

motor neuron protein), also copurifies with EIF2C2/

Ago2, a human Argonaute homolog [25��]. In Arabidopsis,
a putative helicase, SDE3, is required for long-range

transport of RNA-mediated silencing triggers [52]. It

has been suggested that the action of an RNA helicase

may be two-fold: the classical view of a helicase is that it

has unwinding activity and, in addition, it has been

suggested that helicases could act as ‘RNPases’, remo-

deling the interactions between RNA and proteins [53].

The many processing steps that have been defined for

miRNAs and other RNAs entering the RNAi pathway

probably necessitate multiple reorganizations of ribonu-

cleoprotein particles.

The PAZ domain is a highly conserved domain that is

unique to Dicer enzymes and Argonaute proteins [54].

The structure of the PAZ domain was recently solved

by X-ray crystallography and NMR, revealing a deviant

OB-fold structure with a weak but consistent affinity for

nucleic acids [55�–57�]. The PAZ domain has a particular

specificity for single-stranded 30 RNA ends, including the

two-nucleotide 30 overhang structure characteristic of

RNaseIII processing. This suggests that a function for

PAZ in Dicer could be to choose substrates that have

been pre-processed by Drosha, thus allowing selection for

pre-miRNAs [55�]. Interestingly, S. pombe Dicer does

not have a PAZ domain — perhaps indicating that the

S. pombe RNAi machinery uses a different mechanism for

substrate specificity in the absence of miRNAs.

Effector complexes
Dicer cleavage must be followed by release of the

mature miRNA or siRNA, and its incorporation into a

RISC (RNA-induced silencing complex) or RITS

(RNA-induced initiation of gene transcriptional gene

silencing) effector complex whose diverse functions

can include mRNA cleavage, translation suppression,

transcriptional silencing and heterochromatin formation.

The C. elegans double-stranded-RNA-binding protein

RDE-4 and its Drosophila homolog R2D2 facilitate the

transfer of siRNAs to RISC [46,58�] (Figure 2). There

are also likely to be a number of additional components

that aid in RISC assembly [59], particularly those that

unwind siRNAs or miRNAs and through this action

determine which strand of these small RNA duplexes

becomes active for silencing [60��].

RISCs are ribonucleoprotein complexes that contain

members of the PAZ–Piwi-domain Argonaute family of

proteins, siRNAs or miRNAs, and miRNA/siRNA-com-

plementary mRNAs (Figure 2). In addition, RISCs con-

tain a number of accessory factors, some of which have

activities necessary for effector function. Most organisms

have a number of Argonaute family homologs — Droso-
phila has five, mouse has eight and worms have at least 24

[54]. It seems likely that these proteins give specificity to

RISC and perhaps along with the other proteins and

enzymes present in RISC determine the specific response

to a particular miRNA or siRNA. The PAZ domain of

Argonaute proteins is likely to directly engage siRNAs/

miRNAs generated or released by Dicer [55�]; the PIWI

domain was recently shown to interact directly with and

inhibit the RNaseIII/dsRNA-binding domain region of

Dicer [61�,62]. This was interpreted as a substrate transfer

interaction, and it was speculated that PIWI interactions

with Dicer may stimulate miRNA/siRNA release;

furthermore, this interaction was found to take place in

both the cytosolic and the membrane-associated fractions

of 293T cells, consistent with previous reports that human

Dicer colocalizes with calreticulin at the endoplasmic

reticulum [39,61�].

A number of other factors have been found to associate

with Argonaute proteins in RISC complexes. In Droso-
phila S2 cells, RISCs additionally contain Vasa intronic

gene (VIG), a possible endonuclease known as TSN-1,

and dFXR, a Drosophila homolog of fragile X mental

retardation protein (FMRP) [63,64��,65]. A similar com-

plex, containing Argonaute, TSN-1 and VIG homologs

along with siRNAs, was detected in both C. elegans

miRNA biogenesis and the RNAi machinery Murchison and Hannon 225
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extracts and mammalian cells [64��]. Mammalian Argo-

naute-containing complexes have been found to co-

immunoprecipitate with SMN-interacting proteins

Gemin3 and Gemin4 [25��] (Figure 2). A recent report

has shown that human FMRP co-immunoprecipitates

with EIF2C2/Ago2 and miRNAs in transformed human

B-cells and that Drosophila Ago1 is required for FMRP

function in neural development and synaptogenesis in
vivo [66��]. This suggests that miRNAs may be required

for FMRP function, and implicates RNAi in fragile X

mental retardation syndrome.

The precise biochemical mechanisms whereby RISCs

carry out their functions are unknown. Two well-char-

acterized RISC activities are mRNA cleavage and trans-

lational suppression. The ‘Slicer’ activity that mediates

messenger cleavage has not yet been identified, while a

clue to the translational inhibition response may come

from the tight association often found between RISC and

polyribosomes [65,67,68]. It is tempting to speculate that

RISC binds the polyribosome, forming a stable complex

to stall further translation; however, in reality, the mech-

anism is likely to be much more subtle and intricate.

In S. pombe, Ago1, the only Argonaute homolog, is

assembled into a RITS complex. RITS also contains

Chp1, a chromodomain-containing centromere-binding

protein required for methylation of histone H3 lysine 9

at the centromeric repeats, and Tas3, a protein of

unknown function with a region of similarity to mouse

protein OTT (ovaries and testes transcribed) [69��]. The

RITS uses siRNAs derived from centromeric repeat tran-

scripts to guide its localization at the centromeric repeats,

where it induces heterochromatin formation [69��].

In Drosophila, the RNAi mutants Aubergine and Piwi

(both members of the Argonaute family) and spindle-E

(an RNA helicase) are required for heterochromatin for-

mation at transgene arrays [51]. However, there is as yet

no evidence for a RITS-like complex in Drosophila.

Additionally, there have yet to emerge observations sup-

porting the existence of a chromatin-regulatory arm of the

Figure 2
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RISC assembly. A 22 nt miRNA or siRNA is recognized by the PAZ domain of an Ago protein, and incorporated into RISC; R2D2/RDE-4

facilitates transfer of miRNAs or siRNAs into RISC. RISC components identified in the Drosophila S2 cell system include, besides Ago, TSN-1,

VIG and dFRX. An additional complex has been described in mammalian cells, which contains miRNAs, Ago2 and Gemin3 and Gemin4. An early

step in RISC maturation is the unwinding of the miRNA duplex into a single-stranded form. Depending upon its specific components, RISC may

target homologous mRNA for cleavage, stall mRNA translation, perhaps in complex with polyribosomes, or induce chromatin modification and

transcriptional gene silencing (this activity has only been directly observed in S. pombe).
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RNAi pathway in mammals. Although both strands of the

centromeric satellite repeats in mouse are transcribed

[70,71], no siRNAs derived from satellite repeats have

been cloned from mammalian cells despite extensive

efforts [17�,18,19,68,72]. It remains to be seen whether

this is due to low abundance or an absence of centromeric

siRNAs.

Turnover and transport
RISC is a multiple-turnover enzyme complex and, once

incorporated, an siRNA or miRNA can direct multiple

rounds of target cleavage [73], but whether RISC can act

in a similarly catalytic manner in mediating translational

suppression is not clear. One strand of the miRNA or

siRNA duplex is preferentially incorporated into RISC in

a manner which is dependent upon the thermodynamics

of the duplex [60��,74]. It is therefore unlikely that

siRNAs and miRNAs are recycled if released from RISC.

Thus miRNP or siRNP stability defines a limiting step in

the persistence of the RNAi response. Recently, a poten-

tial siRNA turnover enzyme was isolated in a genetic

screen for enhancers of RNAi in worms [75��]. Called

eri-1, this enzyme is related to the RnaseT family of 30–50

exonucleases, having specificity for 30 overhangs [75��].
This led the authors to suggest that eri-1 destabilizes

siRNAs by removing their 30 overhangs, perhaps render-

ing them ‘invisible’ to RISC.

It is clear that siRNAs and miRNAs are not confined by

the cell membrane. It has long been known that systemic

RNAi in C. elegans and plants leads to an organismal

silencing effect by intercellular transport of siRNA and

dsRNA, and recent work has described the C. elegans
transporter, SID-1, which specifically transports dsRNA

into cells [76�]. Interestingly, one recent report has

raised the possibility that a miRNA may act as a movable

signal, reminiscent of a morphogen or hormone, to

specify leaf cell identity in maize [77��]. It will be

interesting to learn if such role has been conserved in

other systems.

Conclusions
Recent advances in the areas of miRNA biogenesis and

the identification of new interactions and players in the

core RNAi machinery have broadened our mechanistic

and biological understanding of the RNAi pathway.

Future work will highlight the scope and function of

miRNA and RNAi biology by confirming more miRNA:-

target pairs, identifying more players and mechanistic

details, and determining the scope and limitations of

RNAi in different model systems.
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